Chapter 12: Vectors and Geometry in Space

12.1: Intro to R^{3} (Video)

R: $\quad \mathrm{x}$
$R^{2}: \quad(x, y)$
$R^{3}: \quad(x, y, z)$
Ordered triple
Right Hand Orientation

Coordinate planes:
xyplane; $z=0$ zz plane; $;=0$
zz plane; $\mathrm{y}=0$

https://www.geogebra.org/m/mqGpuMUf

Isometric Grid Paper

Development of Distance Formula in R^{3} : Find the distance between points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$

Midpoint $P_{1} P_{2}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2},\right)$

Visualizing R^{3} :

1. Determine whether each statement is true or false in \mathbb{R}^{3}.
(a) Two lines parallel to a third line are parallel.
(b) Two lines perpendicular to a third line are parallel.
(c) Two planes parallel to a third plane are parallel.
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to a plane are parallel.
(f) Two lines perpendicular to a plane are parallel.
(g) Two planes parallel to a line are parallel.
(h) Two planes perpendicular to a line are parallel.
(i) Two planes either intersect or are parallel
(j) Two lines either intersect or are parallel.
(k) A plane and a line either intersect or are parallel.

Graphing in R^{3} (12.1 cont'd and 12.6) (Video)

Sphere: The set of all points equidistant from a fixed point (h, k, l)
Example: Graph: $x^{2}+y^{2}+z^{2}-4 x+2 y-6 z+13=0$

Plane: (more to come in 125)

Cylinder: Not what you might think...
Cylinders
A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given line and pass through a given plane curve.

Examples Cylinders:

General Second Degree Polynomials:
In R^{2}

In R^{3}

Quadric Surfaces: (class)

One technique in graphing involves considering traces $x=k, y=k, z=k$.

From Cross Section Animation on 5C page: http://archives.math.utk.edu/ICTCM/VOL10/C009/h1sv.gif

Example: Sketch $\quad z=x^{2}+\frac{y^{2}}{4}$
Consider Traces:

Graphing Software:

Elliptical Paraboloid
$\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
$\frac{y}{c}=\frac{x^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}$
$\frac{x}{c}=\frac{z^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$

Example: Sketch: $y=\frac{x^{2}}{4}+\frac{z^{2}}{9} ; \quad y=-\left(\frac{x^{2}}{4}+\frac{z^{2}}{9}\right)$

Hyperboloid of One Sheet: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \quad \frac{-x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
Example: Sketch $x^{2}+\frac{y^{2}}{4}-\frac{z^{2}}{4}=1$

Show on geogebra with cross sections

Hyperboloid of Two Sheets: $\frac{-x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \quad \frac{-x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{-z^{2}}{c^{2}}=1 \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
Example: Sketch $-x^{2}+\frac{y^{2}}{4}-\frac{z^{2}}{4}=1$

Hyperbolic Paraboloid: $\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} \quad \frac{y}{c}=\frac{x^{2}}{a^{2}}-\frac{z^{2}}{b^{2}} \quad \frac{x}{c}=\frac{z^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$

Example: Sketch $z=y^{2}-x^{2}$

Example Hyperbolic Paraboloid Cont'd

es- \quad In Figure 8 we fit together the traces from Figure 7 to form the surface $z=y^{2}-x^{2}$,
pe a hyperbolic paraboloid. Notice that the shape of the surface near the origin resembles that of a saddle. This surface will be investigated further in Section 14.7 when we discuss saddle points.

See also in book:
Ellipsoid: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
Cone: $\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \quad \frac{y^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{z^{2}}{b^{2}} \quad \frac{x^{2}}{c^{2}}=\frac{z^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \quad$ and half cone $\frac{z}{c}=\sqrt{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}} \ldots \ldots$

12.2 Vectors (Video)

A vector is a mathematical object that allows us to represent both \qquad and
\qquad Vectors are often used physics and engineering.

Geometric Representation of a vector:
Initial point, terminal point, notation, magnitude, direction, equal vectors

Algebraic (Component) Representation of a Vector: Superimpose a coordinate system

Computing the components of a vector $\underline{V} \underline{\text { with representative }} \overline{\vec{P}} \vec{Q} \underline{\text { where the coordinates of points } \mathrm{P} \text { and } \mathrm{Q} \text { are given. }}$

Converting: Magnitude/Direction to Component Form (if θ in standard position)
Given $\|\vec{V}\|, \quad \theta$ find \qquad

Example:

Converting: Component Form to Magnitude/Direction Form

Given $\vec{V}=<a b>$ find \qquad

*** What quadrant is θ in?

Examples:

Vector Operations

Addition

Geometric:

Tip-to-Tail

Parallelogram

Addition (cont'd)

$$
\begin{aligned}
& \text { Algebraic: } \\
& \qquad \overrightarrow{\text { Suppose } \vec{v}=\left\langle v_{1}, v_{2}\right\rangle \text { and } \vec{w}=\left\langle w_{1}, w_{2}\right\rangle \text {. The vector } \vec{v}+\vec{w} \text { is defined by }} \\
& \left.\qquad v_{1}+w_{1}, v_{2}+w_{2}\right\rangle
\end{aligned}
$$

Scalar Multiplication

Geometric:

Algebraic
If k is a real number and $\vec{v}=\left\langle v_{1}, v_{2}\right\rangle$, we define $k \vec{v}$ by

$$
k \vec{v}=k\left\langle v_{1}, v_{2}\right\rangle=\left\langle k v_{1}, k v_{2}\right\rangle
$$

Subtraction

Geometric:
Adding Opposite

Properties of Vectors If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors in V_{n} and c and d are scalars, then

1. $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$
2. $\mathbf{a}+(\mathbf{b}+\mathbf{c})=(\mathbf{a}+\mathbf{b})+\mathbf{c}$
3. $\mathbf{a}+\mathbf{0}=\mathbf{a}$
4. $\mathbf{a}+(-\mathbf{a})=\mathbf{0}$
5. $c(\mathbf{a}+\mathbf{b})=c \mathbf{a}+c \mathbf{b}$
6. $(c+d) \mathbf{a}=c \mathbf{a}+d \mathbf{a}$
7. $(c d) \mathbf{a}=c(d \mathbf{a})$
8. $1 \mathbf{a}=\mathbf{a}$

Zero Vector: \qquad
Proving Properties of Vectors:

Unit Vector
A vector \bar{v} is called a unit vector if $\|\vec{v}\|=$ \qquad
Standard basis unit vectors: $\vec{i}=\hat{i}=$ \qquad

$$
\vec{j}=\hat{j}=
$$

\qquad

All vectors $\vec{v}=\langle a b>$ can be written in the form $\vec{v}=a \vec{i}+\vec{j}$

We are often interested to find unit vectors in a specified direction.
EX: Find a unit vector in the direction of $\vec{v}=<-3,4>$

In general, a unit vector in the direction of \bar{v} is given by

EX: Find a vector of length 7 in the direction of $\vec{v}=<-3,4>$

Vectors can be used to show the direction of lines:
Example: Find a vector parallel to the line $3 x+2 y=6$

Application - Resultants of Forces (Video)

75. Resultant Force Two forces of magnitude 40 newtons (N) and 60 N act on an object at angles of 30° and -45° with the positive x-axis, as shown in the figure. Find the direction and magnitude of the resultant force; that is, find $\mathbf{F}_{1}+\mathbf{F}_{2}$.

Extending to R^{3} (Video)

For a vector in $\mathrm{R}^{3}, \vec{v}=\langle a, b, c\rangle$ which can also be written in terms of the standard basis vectors
as $\vec{v}=a \vec{i}+\vec{j}+c \vec{k}$ where $\vec{i}=\langle 1,0,0\rangle, \vec{j}=\langle 0,1,0\rangle, \vec{k}=\langle 0,0,1\rangle$. Vector computations and properties extend to R^{3} as shown in the example:

Example: If $\vec{v}=\langle 1,3,-2\rangle$ and $\vec{w}=\langle 2,5,0\rangle$, find:
$\vec{V}+\vec{W}=$ \qquad
$3 \vec{W}=$ \qquad
$\|\vec{V}\|=$ \qquad
a unit vector in the direction of \vec{V} \qquad _

If $P=(6,1,3)$ and $Q=(-5,2,1)$ then $\overrightarrow{P Q}=$ \qquad
If not given in component form, a vector in R^{3} can be described in terms of magnitude and direction angles which are the angles between the vector and each of the axes.

12.3 The Dot Product (Scalar Product, Inner Product) (Video)

1 Definition If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the dot product of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Examples:

```
2) Properties of the Dot Product If a,b, and c are vectors in }\mp@subsup{V}{3}{}\mathrm{ and c is a
scalar, then
```

1. $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$
2. $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
3. $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
4. $(c \mathbf{a}) \cdot \mathbf{b}=c(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(c \mathbf{b})$
5. $\mathbf{0} \cdot \mathbf{a}=0$

Example Proof

Applications of Dot Products. (Video)

Seemingly unrelated problem: Find "the angle" between two vectors

$$
\cos (\theta)=\frac{\vec{V} \bullet \vec{W}}{\|\vec{V}\|\|\vec{W}\|} \quad \vec{V} \bullet \vec{W}=\|\vec{V}\|\|\vec{W}\| \cos (\theta) \quad \vec{V} \bullet \vec{W}=v_{1} w_{1}+v_{2} w_{2}
$$

Another way to find the dot product, depending on what info you are given.
Example: Find $\mathbf{v} \cdot \mathbf{w}$
given the vectors \mathbf{v} and \mathbf{w} as shown, with the angle between \mathbf{v} and \mathbf{w} equals 60°,
$\|v\|=5$

Example: Find the angle between
a) $\vec{v}=\langle 3,1\rangle \quad \vec{w}=\langle 2,4\rangle$

b) $\vec{v}=\langle-2,1\rangle \quad \bar{w}=\langle 3,-4\rangle$

$\vec{V} \bullet \vec{W}<0$

$$
\begin{aligned}
& \vec{V} \bullet \vec{W}=0 \\
& \theta=\ldots
\end{aligned}
$$

Orthogonal Vectors:

Ex: Are the vectors $\vec{v}=<4,-1>$ and $\vec{w}=<-3,2>$ orthogonal?
Ex: Are the vectors $\vec{v}=<7,-2>$ and $\vec{w}=<4,14>$ orthogonal?
Ex: Find x such that $\vec{v}=\langle 4, x>$ and $\vec{w}=<-5,2>$ orthogonal.

Orthogonal Projections (Video)

Derivation of the formula for finding the projection of \vec{v} onto $\vec{w}, \operatorname{proj}_{\vec{W}}(\vec{v})$

First notice that $\operatorname{proj}_{\vec{W}}(\vec{V})$ is either in the direction of \vec{w} or in the opposite direction, thus

$$
\operatorname{proj}_{\hat{w}}(\vec{v})=
$$

or

$$
\operatorname{pro}_{\bar{W}}(\vec{v})=
$$

\qquad
Suppose we knew the length of the projection, call it $\mathrm{L} .\left(\mathrm{L}=\left\|\operatorname{pro}_{\vec{W}}(\vec{v})\right\|\right)$. Then similar to the example on page 14 , $\operatorname{proj}_{\vec{W}}(\vec{V})=$ \qquad or $\quad \operatorname{proj}_{W}(\vec{V})=$ \qquad
Now let's find L

$\frac{L}{\|\vec{v}\|}=$
$\frac{L}{\|\vec{v}\|}=$ \qquad
$L=$ \qquad $L=$ \qquad
$L=$ \qquad $L=$ \qquad
$\operatorname{proj}_{\bar{w}}(\vec{v})_{=}=$ \qquad or

$$
\operatorname{proj}_{\hat{N}}(\vec{v})_{=}
$$

$$
\begin{array}{ll}
\text { Scalar projection of } \mathbf{b} \text { onto } \mathbf{a}: & \operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} \\
\text { Vector projection of } \mathbf{b} \text { onto } \mathbf{a}: & \operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}} \mathbf{a}
\end{array}
$$

Example: Let $\vec{V}=<1,3>$ and $\vec{w}=<-4,1>$ Find $\operatorname{proj}_{\vec{W}}(\vec{V})$

Example of using orthogonal projections to find distance.: (class)
12.3:\#53 Use projections to show that the distance from a point $P_{1}\left(x_{1}, y_{1}\right)$ to the line $a x+b y+c=0$ is $d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$

12.4 Cross Product (Video)

```
4 Definition If a = \langlea, , a},\mp@subsup{a}{3}{}\rangle\mathrm{ and }\mathbf{b}=\langle\mp@subsup{b}{1}{},\mp@subsup{b}{2}{},\mp@subsup{b}{3}{}\rangle\mathrm{ , then the cross product of \(\mathbf{a}\) and \(\mathbf{b}\) is the vector
```

$$
\mathbf{a} \times \mathbf{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

We can use determinants to help with computation:
Matrix:
Determinant:
2X2 determinant:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

3X3 determinant:

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{cc}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

$\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
Examples:

What does $\vec{a} \times \vec{b}$ look like?

Direction of : $\vec{a} \times \vec{b}$
In the last example, compute the following:

$$
(\vec{a} \times \vec{b}) \cdot \vec{a}
$$

\qquad

$$
(\vec{a} \times \vec{b}) \bullet \vec{b}
$$

What does this tell us about the cross product? \qquad
With direction determined by the Right Hand Rule
We can prove in general, \qquad

SUPER HELPFUL TIP: Use this fact to check your cross products!

Length of $\vec{a} \times \vec{b}$:

9 Theorem If θ is the angle between \mathbf{a} and \mathbf{b} (so $0 \leqslant \theta \leqslant \pi$), then

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

Note: if $\vec{a} \times \vec{b}=\overrightarrow{0}$ \qquad
(This is a good fact to know, but an easier way to determine whether vectors are parallel is \qquad _)

PROOF From the definitions of the cross product and length of a vector, we have

$$
\begin{aligned}
|\mathbf{a} \times \mathbf{b}|^{2}= & \left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} \\
= & a_{2}^{2} b_{3}^{2}-2 a_{2} a_{3} b_{2} b_{3}+a_{3}^{2} b_{2}^{2}+a_{3}^{2} b_{1}^{2}-2 a_{1} a_{3} b_{1} b_{3}+a_{1}^{2} b_{3}^{2} \\
& \quad+a_{1}^{2} b_{2}^{2}-2 a_{1} a_{2} b_{1} b_{2}+a_{2}^{2} b_{1}^{2} \\
= & \left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2} \\
= & |\mathbf{a}|^{2}|\mathbf{b}|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2} \\
= & |\mathbf{a}|^{2}|\mathbf{b}|^{2}-|\mathbf{a}|^{2}|\mathbf{b}|^{2} \cos ^{2} \theta \quad \text { (by Theorem 12.3.3) } \\
= & |\mathbf{a}|^{2}|\mathbf{b}|^{2}\left(1-\cos ^{2} \theta\right) \\
= & |\mathbf{a}|^{2}|\mathbf{b}|^{2} \sin ^{2} \theta
\end{aligned}
$$

To help picture this length, note that if we have a parallelogram formed by vectors \vec{a} and \vec{b}

11 Properties of the Cross Product If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors and c is a
scalar, then

1. $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
2. $(c \mathbf{a}) \times \mathbf{b}=c(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(c \mathbf{b})$
3. $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
4. $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$
5. $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
6. $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$

Illustation of property 2 :

Triple scalar product : not covered.

Distance from Point to Line in R3

45. (a) Let P be a point not on the line L that passes through the points Q and R. Show that the distance d from the point P to the line L is

$$
d=\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}
$$

where $\mathbf{a}=\overrightarrow{Q R}$ and $\mathbf{b}=\overrightarrow{Q P}$.

12.5 Equations of Lines and Planes (class)

12.5i : Equations of Lines

Recall 10.1 - Parametric Equations: Given a curve in R^{2}, we can express it as an equation in two variables \qquad , in
function form \qquad or as a pair of parametric equations \qquad

In R^{3}, an equation in 3 variables is a \qquad The only way to express a curve in R^{3}, is to use
\qquad or equivalently a vector function.

Development of Equations of Lines in R^{3} : What info would we need to uniquely determine a line?
Given a point on the line $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and a "direction vector" $\vec{V}=\langle a, b, c\rangle$ parallel to the line

Symmetric Form:

Example: Find equations of the line through point $(2,6,1)$ and parallel to $\vec{v}=\left\langle\frac{1}{2},-3,4\right\rangle$

Recall: Parameterization is not \qquad
Example: Find the equations of the line through points $(3,4,-1)$ and $(5,0,7)$

Example: Parameterizing a line segment : Find equations for the line segment from $(3,4,-1)$ to $(5,0,7)$ (for additional explanation, see the Math 5C page, "Line Segments"

Intersection of lines in R3: What could happen?

1) \qquad
2) \qquad
3)
4)

Example: Determine whether the lines intersect:

$$
L_{1}:\left\{\begin{array}{l}
x=1 \\
y=3+2 t \\
z=4+t
\end{array} \quad L_{2}:\left\{\begin{array}{l}
x=-1+2 s \\
y=2+s \\
z=3+s
\end{array}\right.\right.
$$

Note: Be sure the lines have different parameters or you will be determining collision, not intersection
Example: Show that the lines are skew:

$$
L_{1}:\left\{\begin{array}{l}
x=2 t \\
y=t-3 \\
z=1-t
\end{array} \quad L_{2}:\left\{\begin{array}{l}
x=s \\
y=1+s \\
z=3 s-2
\end{array}\right.\right.
$$

12.5ii : Equations of Planes

Development of Equations of Planes in R^{3} : What info would we need to uniquely determine a plane?
Given a point on the line $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and a "normal vector" $\vec{n}=\langle a, b, c\rangle$ orthogonal to the plane

Example: Find the equation of the plane containing point $(3,1,-4)$ and having $\vec{n}=\langle 7,-2,3\rangle$

Example: Find the equation of the plane containing points \qquad

Example: Find the equation of the plane containing lines:
$L_{1}:\left\{\begin{array}{l}x=1+t \\ y=3-2 t \\ z=-2+2 t\end{array} \quad L_{2}:\left\{\begin{array}{l}x=2 s+4 \\ y=2-4 s \\ z=4 s-1\end{array}\right.\right.$

Intersection of 2 Planes: What could happen?

1) \qquad 2) \qquad 3)

Example: Find the intersection of the planes $\left\{\begin{array}{l}x+y-2 z=5 \\ 2 x-y-z=1\end{array}\right.$ Two approaches

We have considered: Distance point to line in R^{2} and in R^{3}
Distance point to plane :

Distance between parallel planes:
Example: Find the distance between the planes $x+2 y-2 z=3$ and $2 x+4 y-4 z=7$

Distance between skew lines:
Example: Find the distance between

$$
L_{1}:\left\{\begin{array}{l}
x=1+4 t \\
y=5-4 t \\
z=-1+5 t
\end{array} \quad L_{2}:\left\{\begin{array}{l}
x=2+8 t \\
y=4-3 t \\
z=5+t
\end{array}\right.\right.
$$

Ans: $\frac{95}{\sqrt{1817}}$

